Part Number Hot Search : 
KBL201 2SD1664 LV102 P6SMB 7002KDW SL8454 Y2309Z UPD78
Product Description
Full Text Search
 

To Download LIRFZ44N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 LESHAN RADIO COMPANY, LTD.
55V N-Channel Mode MOSFET
VDS=55V RDS(ON), Vgs@10V, Ids@25A =17.5m
l l l l l l
LIRFZ44N
Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Fully Avalanche Rated
TO-220
D
G S
Absolute Maximum Ratings
Parameter
ID @ TC = 25C ID @ TC = 100C IDM PD @T C = 25C VGS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew
Max.
49 35 160 94 0.63 20 25 9.4 5.0 -55 to + 175 300 (1.6mm from case ) 10 lbf*in (1.1N*m)
Units
A W W/C V A mJ V/ns C
Thermal Resistance
Parameter
RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
Typ.
--- 0.50 ---
Max.
1.5 --- 62
Units
C/W
1/8
LESHAN RADIO COMPANY, LTD.
LIRFZ44N
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)DSS
V(BR)DSS/TJ
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss EAS
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Single Pulse Avalanche Energy
Min. Typ. Max. Units Conditions 55 --- --- V VGS = 0V, I D = 250A --- 0.058 --- V/C Reference to 25C, ID = 1mA --- --- 17.5 m VGS = 10V, ID = 25A 2.0 --- 4.0 V VDS = VGS, ID = 250A 19 --- --- S VDS = 25V, ID = 25A --- --- 25 VDS = 55V, VGS = 0V A --- --- 250 VDS = 44V, VGS = 0V, TJ = 150C --- --- 100 VGS = 20V nA --- --- -100 VGS = -20V --- --- 63 ID = 25A --- --- 14 nC VDS = 44V --- --- 23 VGS = 10V, See Fig. 6 and 13 --- 12 --- VDD = 28V --- 60 --- ID = 25A ns --- 44 --- RG = 12 --- 45 --- VGS = 10V, See Fig. 10 Between lead, 4.5 --- --- 6mm (0.25in.) nH G from package --- 7.5 --- and center of die contact --- 1470 --- VGS = 0V --- 360 --- VDS = 25V --- 88 --- pF = 1.0MHz, See Fig. 5 --- 530 150 mJ IAS = 25A, L = 0.47mH
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Qrr ton Notes:
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol 49 --- --- showing the A G integral reverse --- --- 160 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 25A, VGS = 0V --- 63 95 ns TJ = 25C, IF = 25A --- 170 260 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11)
ISD 25A, di/dt 230A/s, VDD V(BR)DSS,
TJ 175C
Starting TJ = 25C, L = 0.48mH
RG = 25, I AS = 25A. (See Figure 12)
Pulse width 400s; duty cycle 2%. This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to TJ = 175C .
2/8
LESHAN RADIO COMPANY, LTD.
LIRFZ44N
1000
I D , Drain-to-Source Current (A)
100
I D, Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
1000
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100
4.5V
10
10
4.5V
1 0.1
20s PULSE WIDTH TJ = 25 C
1 10 100
1 0.1
20s PULSE WIDTH TJ = 175 C
1 10 100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.5
ID = 49A
R DS(on) , Drain-to-Source On Resistance (Normalized)
I D , Drain-to-Source Current (A)
TJ = 25 C TJ = 175 C
2.0
100
1.5
1.0
10
0.5
1 4 5 6 7
V DS = 25V 20s PULSE WIDTH 8 9 10 11
0.0 -60 -40 -20
VGS = 10V
0 20 40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
3/8
LESHAN RADIO COMPANY, LTD.
LIRFZ44N
2500
VGS , Gate-to-Source Voltage (V)
2000
VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd
20
ID = 25A VDS = 44V VDS = 27V VDS = 11V
16
C, Capacitance (pF)
1500
Ciss
12
1000
8
500
Coss Crss
4
0 1 10 100
0 0 10 20 30 40 50 60 70
VDS , Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000
1000 OPERATION IN THIS AREA LIMITED BY R DS (on)
ISD , Reverse Drain Current (A)
100
TJ = 175 C
ID , Drain-to-Source Current (A)
100
10
10
100sec
1msec 1 Tc = 25C Tj = 175C Single Pulse 1 10 VDS , Drain-toSource Voltage (V) 10msec
1
TJ = 25 C
0.1 0.0
V GS = 0 V
0.6 1.2 1.8 2.4
0.1
100
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4/8
LESHAN RADIO COMPANY, LTD.
LIRFZ44N
50
VDS
40
RD
VGS RG
D.U.T.
+
ID , Drain Current (A)
-VDD
30
VGS
20
Pulse Width 1 s Duty Factor 0.1 %
Fig 10a. Switching Time Test Circuit
10
VDS 90%
0 25 50 75 100 125 150 175
TC , Case Temperature
( C)
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10b. Switching Time Waveforms
10
Thermal Response (Z thJC )
1
D = 0.50 0.20 0.10 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1
0.1
0.05 0.02 0.01
0.01 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5/8
LESHAN RADIO COMPANY, LTD.
LIRFZ44N
1 5V
300
EAS , Single Pulse Avalanche Energy (mJ)
TOP
240
VD S
L
D R IV E R
BOTTOM
ID 10A 18A 25A
RG
20V
D .U .T
IA S tp 0 .01
+ - VD D
180
A
120
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS tp
60
0 25 50 75 100 125 150 175
Starting TJ , Junction Temperature ( C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
12V
.2F .3F
VGS
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
IG
ID
Charge
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
6/8
LESHAN RADIO COMPANY, LTD.
LIRFZ44N
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T* Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
+
-
+
RG VGS * dv/dt controlled by RG * ISD controlled by Duty Factor "D" * D.U.T. - Device Under Test
+ VDD
*
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive P.W. Period D=
P.W. Period
[VGS=10V ] ***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
[ VDD]
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
[ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For N-channel power MOSFETs
7/8
LESHAN RADIO COMPANY, LTD.
LIRFZ44N
8/8


▲Up To Search▲   

 
Price & Availability of LIRFZ44N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X